NONLOCALLY ELASTIC FILTRATION REGIME AND PRESSURE
RECOVERY IN DEEP FORMATIONS

E, F, Afanas'ev and V, N, Nikolaevskii

We examined axisymmetric filtration flows in the nonlocally elastic filtration regime. The solution
is presented of the problem of pressure recovery in a formation after sudden termination of fluid removal,
It is shown that the well pressure recovery curve has two asymptotic rectilinear segments corresponding
to different formation piezoconductivity coefficients (large for small times, and small for large times),
which opens up the possibility of new interpretations of the known shapes of the measured curves,

1. In accordance with the theory of the nonlocally elastic filtration regime of homogeneous fluid in
a deep planar formation [1], the linear equation of unsteady filtrational flow
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is supplemented by the integral condition for constancy of the rock pressure I(xy, x) at each point of the
formation
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Here p and K are the density and viscosity of the filtering fluid, k and m are the permeability and
porosity of the formation, p is the pore pressure, and ¢ is the effective pressure in the skeleton of the
porous medium
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the subscript zero relates to the undisturbed state, G is the intensity of the sources (sinks) simulating
well operation, and & is the influence function, given [1] in the form
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If the influence zone scale d is much smaller than the characteristic dimension of the region of
variation of the pressure p, condition (1.2) becomes the usual [2, 3] local condition for constancy of the rock
pressure: ¢ +p = I, However, if the scale d is relatively large, condition (1.2) reduces to the condition
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The condition (1,2) is given the following physical intepretation [1]: for relatively small dimensions
of the depression funnel the roof and floor of the formation do not distort and there is no compression of
the skeleton of the medium (¢ = oy). As the depression funnel grows the roof and floor begin to deflect,
the load on the skeleton of the formation at the considered point x4, X; increases and at the same time the
effective compressibility of the formation increases,

2. If we write the condition (1.2), (1.3) in the (r, ¢) polar coordinate system and then use the condition
of independence of the local increments Ag(r, t), Ap(r, t) on the polar angle ¢, which is characteristic for
flows with axial symmetry, and if we then use the integral (see [4], page 972)
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we obtain
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where I, is the Bessel function of imaginary argument.

Let us examine the problem of pressure recovery in a formation after instantaneous shutdown of a
well operating with the flowrate Q = const. Let py(r) be the initial steady-state pressure distribution. The
initial and boundary conditions are
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In this case the initial pressure distribution py(r) satisfies the condition
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We set Q
p=p0(r)+'2'm‘t%u(r. 1) {2.5)

Substituting (2.5) into (1.1), setting therein G = 0,and taking (2.2)-(2.4) into account, we obtain the
solution of the integrodifferential equation
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with the conditions
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Here w =k, (oBmg) ! is the piezoconductivity coefficient, & = b/B, B = a, +a + b is the maximal
compressibility of the formation,

Applying to (1.6) the integral Hankel transformation relative to the transformant
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we obtain the equation
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The solution of (2.8) has the form
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and can be used to interpret well pressure recovery curves, i.e., the function p({ry, t) where ry is the well
radius. In this case we shall consider, as usual, that inside the real well there is a point (fictitious) well
of the same flowrate, which can simulate the real well provided rwz/ (1t) < 1 — relative smallness of the
well radius — which is always realized in practice,
From the solution (2,9) we have
00
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where 6 = d*/(4ry,?), 7= % t/ry%. The quantity € = o[l = exp (~ 0z%)] <1, since @ <1, §>0. We note that
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where the summation over m extends to all the positive integer solutions of the equations i+ 2j+...+lk =n,
{+ 9§+t k =m (see [4], page 34). Moreover the expansion holds
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Substituting the series (2.11), (2.12) into the integral (2.10) and integrating, we obtain
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where we have introduced the Whittaker function [4]
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In the limiting cases with 6 = 0 and € = © we have, respectively,
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We shall make a rough estimate of the approach of the function u(7) to these limiting values for
arbitrary €. According to [4] we have for sufficiently large 7 + v0,
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for the principal terms of the expansion(2.15), Then by virtue of the equality
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At the initial moments of time 6 > 7, Then in (2,15) the principal terms will be those with v = 0 and
the terms with v # 0 are of order O(T,/6) and higher. Therefore, retaining in (2,14) only the first term
el = o, we obtain ¥ = 722(1~ @)}, which yields u = u,. Hence we finally have the estimate

u= ﬁm+ O (t/0) for /1€ 0 (2.17)

3. According to (2.5) the pressure rise Ap = p(ry,, t) = plry, 0) recorded in real wells is expressed
in terms of the resulting solution for u(7). In accordance with the above discussion we can identify three
characteristic segments of the pressure recovery curve, The first segment 1 corresponds to the time
interval

< t<0.16
Qu t—a Qu 2.2 .
Ap=— Zupm E‘( 7T >z Lokt (1’1 a 1”> G.1)

The second segment 2 corresponds to the interval 0.16 <7< 100, Here we shall describe the
pres§ure change approximately by three terms of the expansion (2,13), corresponding to terms of order
0 2
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The third segment 3 corresponds to the time interval 106 < T < 5 here
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The approximate form of the theoretical pressure recovery curve is shown in the figure. The
asymptote CD corresponds to lower compressibility and greater piezoconductivity of the formation (for-
mation roof and floor still stationary), the asymptote AB corresponds to maximal compressibility of the
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formation (formation roof and floor compress the skeleton of the porous
medium); both asymptotes are described by the same traditional formulas
for the elastic filtration regime (3.1) and (3.3) with the same conductivity
kh/p but with different effective piezoconductivity parameters (w/(1— @)

and ).
_ Let us make some numerical estimates. Let d = 20 mm, ry, = 10 cm,
4 . ; 5 W= 1034 em?®/sec. Then 6 = 10* and the duration of interval 1 will be Ty = 0.1
6 = 10° or t = 10 sec. The segment 3 begins at 7y = 10 6 = 10° or at t = 1000
g ntT sec, Thus the duration of the transitional segment 2 will be on the order of
Fig, 1 17 min,

We see from this example that segment 1 can in general be omitted
entirely in practical measurements on wells, and segement 2 of the curve
can be the primary object of observation. In so doing the first half of this segment (up to the arrow in the
figure) can be taken as the defective part of the curve (for example, because of noninstantaneous shutdown
of the well), and the second part @fter the arrow) can be taken as the asymptote AB, Then drawing the
false asymptote EF (dashed) from the experimental points leads to overestimation of the piezoconductivity
coefficient v and underestimation of the conductivity kh/p in comparison with their actual values.

In the case of low-permeability formations (small «) segment 1 may be recorded on the pressure
recovery curves. Then the transition to segment 2 (up to the arrow) can be mistakenly taken as the
asymptote corresponding to traditional elastic filtration regime theory.

In conelusion we emphasize that for very long pressure recovery times the assumptionof stationarity
of the initial pressure distribution is no longer satisfied. The required correction, as in known [5, 6],
lies in plotting the curve of Ap versus In[T/(T + T)], where T is the time of test well operation up to the
moment of shutoff.,
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